skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Penney, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 28, 2026
  2. The purpose of this research is to provide a framework for Large Scale Additive Metals Manufacturing (LSAMM) in arbitrary directions. Traditionally, slicing and path planning is done along the gravity aligned direction of a part, causing more complex geometrical shapes to have unsupported overhangs. The overhangs can be managed using a part positioner or a powder bed process. A different framework for slicing and building parts out of gravity alignment could improve current capabilities of LSAMM processes. The presented research focuses on segmenting more complex geometrical parts into gravity aligned (GA), non-gravity aligned (NGA), and transition segments to help generate toolpaths. Initial research of segment planning for complex geometrical shapes will be presented, as well as current results from builds completed at the University of Tennessee- Knoxville. The completed builds show that more consistent thermal evolution of a part based on the path sequence and torch angle results in successful builds. 
    more » « less